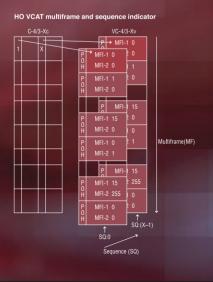

9

0

Virtual Concatenation, G.707

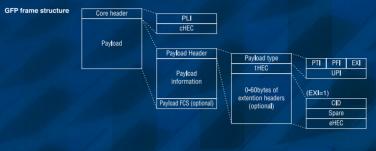
Two methods for concatenation are defined: contiguous and virtual concatenation. Both methods provide concatenated bandwidth of X times Container-N at the path termination. The difference is the transport between the path termination. Contiguous concatenation maintains the contiguous bandwidth through out the whole transport, while virtual concatenation breaks the contiguous bandwidth into individual VCs, transports the individual VCs and recombines these VCs to a contiguous bandwidth at the end point of the transmission. Virtual concatenation requires concatenation functionality only at the path termination equipment, while contiguous concatenation requires concatenation functionality at each network element.

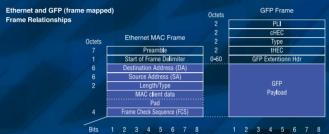
H4 byte 1st multi-frame number 2nd multi-fran	ne numbei	r	1st	2nd		
Bit 1 Bit 2 Bit 3 Bit 4	Bit 5	Bit 6	Bit 7	Bit 8	multi- frame	multi- frame
	1st multif	rame indic	ator MFI1	(bits 1-4)	no.	no.
Sequence indicator MSB (bits 1-4)	1	1	1	0	14	n=1
Sequence indicator LSB (bits 5-8)	1	1	1	1	15	11-1
2nd multiframe indicator MFI2 MSB (bits 1-4)	0	0	0	0	0	
2nd multiframe indicator MFI2 LSB (bits 5-8)	0	0	0	1	1	
Reserved ("0000")	0	0	1	0	2	
Reserved ("0000")	0	0	1	1	3	
Reserved ("0000")	0	1	0	0	4	
Reserved ("0000")	0	1	0	1	5	
Reserved ("0000")	0	1	1	0	6	
Reserved ("0000")	0	1	1	1	7	
Reserved ("0000")	1	0	0	0	8	
Reserved ("0000")	1	0	0	1	9	
Reserved ("0000")	1	0	1	0	10	
Reserved ("0000")	1	0	1	1	11	
Reserved ("0000")	1	1	0	0	12	
Reserved ("0000")	1	1	0	1	13	
Sequence indicator SQ MSB (bits 1-4)	1	1	1	0	14	
Sequence indicator SQ LSB (bits 5-8)	1	1	1	1	15	
2nd multiframe indicator MFI2 MSB (bits 1-4)	0	0	0	0	0	
2nd multiframe indicator MFI2 LSB (bits 5-8)	0	0	0	1	1	
Reserved ("0000")	0	0	1	0	2	


| K4[2] multiframe for LO VCAT | 1 | 2 | 3 | 4 | 5 | 6 | 7 | 8 | 9 | 10|11|2|3|3|4|15|16|17|18|19|20|21|22|23|24|25|26|27|28|29|30|31|32| | Frame Count | Sequence Indicator|

Each VC-3/4 of the VC-3/4-Xv is transported individually through the network. Due to different propagation delay of the VC-3/4s, a differential delay will occur between the individual VC-3/4s. This differential delay has to be compensated and the individual VC-3/4s have to be realigned for access to the contiguous payload area. The realignment process has to cover at least a

A two-stage 512 ms multiframe is introduced to cover differential delays of 125 µs and above (up to 256 ms). The first stage uses H4, bits 5-8 for the 4-bit multiframe indicator (MFI1). MFI1 is incremented every basic frame and counts from 0 to 15. For the 8-bit multiframe indicator of the second stage (MFI2). H4, bits 1-4 in frame 0 (MFI2) bits 1-4) and 1 (MFI2 bits 5-8) of the first multiframe are used. MFI2 is incremented once every multiframe of the first stage and counts from 0 to 255. The resulting overall multiframe is


4096 frames (= 512 ms) long.


The sequence indicator SQ identifies the sequence/order in which the individual VC-3/4s of the VC-3/4-Xv are combined to form the contiguous container VC-3/4-Xe. Each VC-3/4 of a VC-3/4-Xv has a fixed unique sequence number in the range of 0 to XC-1). The VC-3/4 transporting the first time slot of the C-3/4 of the C-3/4-Xc has the sequence number 1 and so on up to the VC-3/4 transporting time C-3/4-X of the C-3/4-Xc with the sequence number (X-1). For applications requiring fixed bandwidth the sequence number (X-1). For applications requiring fixed bandwidth the sequence number with t

Generic Framing Procedure, G.7041

GFP provides a generic mechanism to adapt traffic from higher-layer client signals over a transport network. Client signals may be PDU-oriented (such as IP/PPP or Ethernet MAC), block-code oriented constant bit rate stream (such as Fibre Channel or ESCON/SBCON).

GFP Core Header: The four octets of the GFP Core Header consist of a 16-bit PDU Length Indicator field and a 16-bit Core Header Error Check (cHEC) field. This header al-

PDU Length Indicator (PLI) field: The two-octet PLI field contains a binary number representing the number of octets in the GFP Payload Area. The absolute minimum value of the PLI field in a GFP client frame is 4 octets. PLI values 0-3 are reserved for GFP control

Core HEC (cHEC) field: The two-octet Core Header Error Control field contains a CRC-16 error control code that protects the integrity of the contents of the Core Header by enabling both single-bit error correction and multi-bit error detection. The cHEC sequence is calculated over the octets of the Core Header.

GFP Payload Area: The GFP Payload Area, which consists of all octets in the GFP frame after the GFP Core Header, is used to convey higher layer specific protocol information. This variable length area may include from 4 to 65 535 octets. The GFP Payload Area consists of two common components: a Payload Header and a Payload Information field. An Payload Header: The Payload Header is a variable-length area, 4 to 64 octets long, inten-

Payload Header: The Payload Header is a variable-length area, 4 to 64 octets long, intended to support data link management procedures specific to the higher-layer client signal. The area contains two mandatory fields, the Type and the tHEC fields, and a variable number of additional payload header fields are referred to as the Extension Header. The presence of the Extension Header, and its format, and the presence of the optional Payload FCS are specified by the Type field. The presence of the Extension Header, and its format, and the presence of the optional Payload FCS are specified by the Type field. The presence of the Extension Header, and its format, and the presence of the optional Payload FCS are specified by the Type field. The presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and its format, and the presence of the Extension Header, and the presence of the Extension Header, and the presence of the Extension Header, and the Presence of the Extension Header of the Extensio

GFP Type field: The GFP Type field is a mandatory two-octet field of the Payload Header that indicates the content and format of the GFP Payload Information field. The Type field distinguishes between GFP frame types and between different services in a multi-service environment. The Type field consists of a Payload Type Identifier (PTD), a Payload FCS Indicator (PFI), a Extension Header Identifier (EXI) and a User Payload Identifier (UPI).

 $\label{eq:payload Type Identifying the type of GFP client frame. Two kinds of client frames are currently defined, User Data frames (PTI = 000) and Client Management frames (PTI=100).$

Payload FCS Indicator (PFI): A one bit subfield of the Type field indicating the presence

Extension Header Identifier (EXI): A 4-bit subfield of the Type field identifying the type of Extension Header GFP. Three kinds of Extension Headers are currently defined, a Null Extension Header, a Linear Extension Header, and a Ring Extension Header.

User Payload Identifier (UPI): An 8-bit field identifying the type of payload conveyed in the GFP Payload Information field. Interpretation of the UPI field is relative to the type of GFP client frame as indicated by the PTI subfield. Type HEC (tHEC) field: The two-octet Type Header Error Control field contains a CRC-16

Extension Header for a linear frame: The Payload Header for a Linear (Point-to-Point)

Channel ID (CID) field: The CID is an 8-bit binary number used to indicate one of 256 com-

Extension HEC (eHEC) field: The two-octet Extension Header Error Control field contain

Payload Frame Check Sequence (pFCS) field: The GFP Payload FCS which is an option al, four-octet long, frame check sequence. It contains a CRC-32 sequence that protects the contents of the GFP Payload Information field. A value of 1 in the PFI bit within the Type field identifies the presence of the payload FCS field.

GFP Payload Type Identifiers

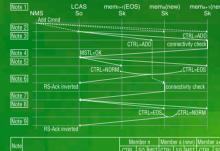
Payload Type Identifiers Type Bits <15:13>	Usage
000	Client Data
100	Client Management
Others	Reserved

Extension Header Identifiers Type Bits <11:8>	Usage
0000	Null Extension Header
0001	Linear Frame
0010	Ring Frame
Others	Reserved

User Payload Identifiers for GFP Client Frames PTI = 000

User Payload Identifier (binary)	GFP Frame
TYPE Bits <7:0>	Payload Area
0000 0000 1111 1111	Reserved and not available
0000 0001	Frame-Mapped Ethernet
0000 0010	Frame-Mapped PPP
0000 0011	Transparent Fibre Channel
0000 0100	Transparent FICON
0000 0101	Transparent ESCON
0000 0110	Transparent Gb Ethernet
0000 0111	Reserved for future
0000 1000	Frame-Mapped Multiple Access Protocol over SDH (MAPOS)
0000 1001	Transparent DVB ASI
0000 1010	Framed Mapped IEEE 802.17 Resilient Packet Ring
0000 1011	Frame-Mapped Fibre Channel FC-BBW
0000 1100	Asynchronous Transparent Fibre Channel
0000 1101 through 1110 1111	Reserved for future standardization
1111 0000 through 1111 1110	Reserved for proprietary use
1	

GFP Client Management frame User Payload Identifier


PTI	= 000
UPI value	Usage
0000 0000 and 1111 1111	Reserved
0000 0001	Client Signal Fail (Loss of Client Signal)
0000 0010	Client Signal Fail
	(Loss of Character Synchronization)
0000 0011 thru 1111 1110	Reserved for future use

Link Capacity Adjustment Scheme, G.7042

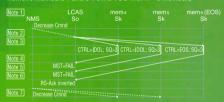
The LCAS is a scheme that should be used to increase or decrease the capacity of a container that is transported in an SDH/OTN network using Virtual Concatenation. In addition, the scheme will automatically decrease the capacity if a member experiences a failure in the network, and increase the capacity when the network fault is repaired. The scheme is applicable to every member of the Virtual Concatenation group.

H4 byte multiframe indicator for HO LCAS

	Bit 2	Bit 5	Bit 6	Bit 7	Bit 8	multi- frame			
34				nultifr IFI1 (t			no.	no.	
Sequence	indicator M	ISBs (bits 1	1	1	1	0	14	n-1	
Sequence i	ndicator L	SBs (bits 5-		1	1	1		15	11-1
2 nd multifr	indicator l	MFI2 MSBs	(bits 1-4)	0	0	0	0	0	
2 nd multifr	indicator l	MFI2 LSBs	(bits 5-8)	0	0	0	1	1	100
CTRL					0	1	0	2	
GID (*000»	7)			0	0	1	1	3	
Reserved (1	0	0	4	
Reserved (,0000,		100	0	1	0	1	5	
CRC-8				0	1	1	0	6	
CRC-8				0	1	1	1	7	n
Member s	tatus MST			1	0	0	0	8	"
Member s	tatus MST			1	0	0	1	9	
0	RS_Ack	1	0	1	0	10			
Reserved	("0000")			1	0	1	1	11	
Reserved	("0000")		SECTION.	1	1	0	0	12	
Reserved	("0000")			1	1	0	1	13	
Sequence	indicator S	Q MSBs (b	its 1-4)		1	1	0	14	
Sequence	indicator S	Q LSBs (bi	ts 5-8)	1	1	1	1	15	
2 nd multifr	indicator	MFI2 MSBs	0	0	0	0	0		
2 nd multifr	indicator	MFI2 LSBs	0	0	0	1	1		
CTRL	0	0	1	0	2	n+1			
0	0	0	1	1	3				
Reserved	0	1	0	0	4				
Reserved	0	1	0	1	5				
C1	C2	Сз	C4	0	1	1	0	6	
C ₅	C ₆	C7	C8	0	1	1	1	7	

Note		Me	mber		Memt	oer a		Membe			RS
IVUIG		CTRL	SQ	MST	CTRL	SQ	MST	CTRL	SQ	MST	Ack
1	Initial Condition	EOS	n-1	OK	IDLE	FF	FAIL	IDLE	FF	FAIL	0
2	NMS issues Add command to So and Sk LCASC	EOS	n-1	ОК	IDLE	FF	FAIL	IDLE		FAIL	0
3	So (a) sends CTRL = ADD and SQ = n; So (a+1) sends CTRL = ADD and SQ =n+1	EOS	n-1	ОК	ADD	n	FAIL	ADD	n+1	FAIL	0
4	Sk (a+1) sends MS=0K to So	EOS	n-1	0K	ADD	n	FAIL	ADD	n+1	OK	0
5	So (n-1) sends CTRL = NORM; So (a+1) sends CTRL = EOS and SQ = n	NORM	n-1	ОК	ADD	n+1	FAIL	EOS		ОК	0
6	RS-Ack bit inverted due to change in sequence	NORM	n-1	OK	ADD	n+1		EOS		OK	1
7	Sk (a) sends MST=OK to So	NORM	n-1	OK	ADD	n+1	OK	EOS	n	OK	1
8	So (a) sends CTRL = EOS; So (a+1) sends CTRL = NORM	NORM	n-1	ОК	EOS	n+1	OK	NORM	n	OK	1
9	RS-Ack bit inverted due to change in sequence	NORM	n-1	OK	EOS	n+1	OK	NORM	п	OK	0

K4[2] multiframe for LO LCAS


ā	Frame Indicator	Sequence Indicator	CTRL	GID	RS. Aci	Member Status	C1 C CRO	1 03

K4 Frame to Member number relation

0. 8. 16. 24 0 1 2 3 4 5 6 7 1. 9. 17. 25 8 9 10 11 12 13 14 15 2. 10. 18. 26 16 17 18 19 20 21 22 23 3. 11. 19. 27 24 25 26 27 28 29 30 31 4. 12. 20. 28 32 33 43 53 66 37 38 39 15. 13. 21. 29 40 41 42 43 44 45 46 47 6. 14. 22. 30 48 49 50 51 52 53 54 5	Frame number		- 1	Mem	iber												
2. 10, 18, 26 16 17 18 19 20 21 22 23 3, 11, 19, 27 24 25 26 27 28 29 30 31 4, 12, 20, 28 22 33 34 35 36 37 38 39 5, 13, 21, 29 40 41 42 43 44 45 46 47	0, 8, 16, 24	0	1	2	3	4	5	6	7								
3, 11, 19, 27	1, 9, 17, 25	8	9	10	11	12	13	14	15								
4, 12, 20, 28 32 33 34 35 36 37 38 39 5, 13, 21, 29 40 41 42 43 44 45 46 47	2, 10, 18, 26	16	17	18	19	20	21	22	23								
4, 12, 20, 28 32 33 34 35 36 37 38 39 5, 13, 21, 29 40 41 42 43 44 45 46 47	3, 11, 19, 27	24	25	26	27	28	29	30									
	4, 12, 20, 28	32	33	34	35	36	37	38	39								
6, 14, 22, 30 48 49 50 51 52 53 54 55	5, 13, 21, 29	40	41	42	43	44	45	46	47								
	6, 14, 22, 30	48	49	50	51	52	53	54	55								
7, 15, 23, 31 56 57 58 59 60 61 62 NA	7, 15, 23, 31	56	57	58	59	60	61	62	NA								

	Value	Command	Remarks
	0000	FIXED	This is an indication that this end uses fixed bandwidth (non-LCAS mode)
Ī	0001	ADD	This member is about to be added to the group
	0010	NORM	Normal transmission
ſ	0011	EOS	End of Sequence indication and Normal transmission
	0101	IDLE	This member is not part of the group or about to be removed
	1111	DNU	Do Not Use (the payload) the Sk side reported FAIL status

Note		Mei	nber	4	Me	mbe	r 5	Me	r 6	RS-	
		CTRL		MST	CTRL	SQ		CTRL	SQ	MST	Ack
1	Initial Condition	NORM	3	OK	NORM	4	0K	EOS	5	OK	0
2	NMS issues Decrease command to So LCASC	NORM	3	OK	NORM	4	0K	EOS	5	OK	0
	So (3) sends CTRL = IDLE, SQ > 3 So (4) sends CTRL = IDLE, SQ > 3 So (5) sends SQ = 3	IDLE		OK	IDLE	> 3		EOS	3	ок	0
4	Sk (un-wanted) sends MST = FAIL to So	IDLE	> 3	FAIL	IDLE	> 3	0K	EOS	3	OK	1
5	Sk (un-wanted) sends MST = FAIL to So	IDLE	> 3	FAIL	IDLE	> 3	FAIL	EOS	3	OK	1
6	RS-Ack bit inverted due to change in sequence	IDLE	> 3	FAIL	IDLE	> 3	FAIL	EOS	3	OK	1
7	NMS issues Decrease command to Sk LCASC	IDLE	> 3	FAIL	IDLE	> 3	FAIL	EOS	3	OK	1

· CTRL="ADD" \to CTRL="EOS" and/or CTRL="ADD" \to CTRL="NORM" (Addition of one or more members);

· CTRL="NORM" (or "EOS") → CTRL="IDLE" (Decrease bandwidth);

Unique simultaneous Ethernet/IP

and SONET/SDH testing

